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Complexity over Symmetric DBs

Recall: in a symmetric DB all ground facts
have the same probability

* We can apply new rules that exploit
symmetries

* Dichotomy into PTIME / #P-hard no longer
applies

* Lower bounds on query compilation no
loner apply



Symmetric WFOMC

No database!

Def. A weighted vocabulary is (R, w), where
-R =(R{, R,, ..., R,) = relational vocabulary
—W = (W, Wy, ..., W) = weights

Fix domain of size n;

— Implicit weights:  w(t) = w;, Vit g[n]laty(RDl

Complexity of symmetric WFOMC(Q,n): fixed Q, input n
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Examples

Q = vx3y R(x,y)
FOMC(Q,n) = (2"-1)"  WOMC(Q,n) = ((1+wg)"-1)"

Q =3x3y [R(x) A S(Xy) AT(y)]

FOMC(Q.n) = » > ( >< )2” ~i (24 1)

1=0,n 7=0,n
WFOMC(Q, n) =
Z Z ( ) >wR wrd (1 4+ wg)" ™ ((1 + wg) — 1)

Computable in PTIME in n
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Hardness Is Hard

Triangle = Ix3y3az [R(X,y) A S(y,z2) AT(z,X)]

It is hard to prove that Triangle is hard!

The input = just one number n, runtime = f(n)
In unary: n = 111...11, runtime = f(size of input)
FOMC(Q, n) in #P,

Unlikely #P-hard [Valiant' 79]

Complexity of FOMC(Triangle, n) = open problem



The Class #P,

#P, = functions in #P over a unary input alphabet
Also called tally problems

Valiant [1979]: there exists #P, complete problems

Bertoni, Goldwurm, Sabadini [1991]:
there exists a CFG s.t. counting # strings of a given
length is #P, complete

What about a natural problem?

— Goldsmith: “no natural combinatorial problems known to
be #P, complete”



The Logic FOX

FOk = FO restricted to k variables
* Note: may reuse variables!
* “The graph has a path of length 10":

Ix3y(R(x,y) A3Ix (R(y,x) A3y (R(x,y) A3Ix (R(y,X) ...

What is known about FOX
« Satisfiability is decidable for FO?
« Satisfiability is undecidable for FOk: k = 3



Results for Symmetric Inference

[Van den Broeck’14 ,Beame’15]



Results for Symmetric Inference

Theorem
There exists Q in FO3 s.t. FOMC(Q, n) is #P, hard
There exists CQ Q s.t. WFOMC(Q, n) Is #P, hard

[Van den Broeck’14 ,Beame’15]
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Results for Symmetric Inference

neorem

nere exists Q in FO* s.t. FOMC(Q, n) is #P, hard
nere exists CQ Q s.t. WFOMC(Q, n) is #P, hard

Theorem WFOMC(Q, n) isin PTIME
« ForanyQ in FO?
* For any gamma-acyclic Q

Corresponding decision problem = the spectrum problem
Data complexity: { Spec(Q) | Q in FO} = NP, [Fagin'74]
Combined complexity: NP-complete for FO?, PSPACE-complete for FO

[Van den Broeck’14 ,Beame’15]



(Non-)Application: O/1 Laws

Def. u,(Q) = fraction of structures over a domain of
Size n that are models of Q

u.(Q) = FOMC(Q, n) / FOMC(TRUE, n)

Theorem. [Fagin'76]
For all Q in FO (w/o constants) Iim_, 5., u,(Q) =0or 1

Example: Q = vx3ay R(X,y);
FOMC(Q,n) = (2"-1)"
1,(Q) = (21-1)/ 272 > 1



(Non-)Application: O/1 Laws
How does one proof the 0/1 law?
« Attempt: find explicit formula p,(Q), compute limit.

 Falls! because p,(Q) Is #P,-hard in general! Very
unlikely to admit a simple closed form formula

* Fagin’s proof: beautiful argument involving infinite
models, the compactness theorem, and
completeness of a theory with a categorical model



Discussion

Fagin 1974

THEOREM 6. Assume that A C Fin(S), and that A is closed under iso-
morphism,

1. If S+, then A isan S-spectrum iff E(A) € NF.

2. If S=@, then A isa spectrum iff E(A) € NP,.

Here: S is a vocabulary, S-spectrum of Q = set of structures that satisfy Q

#P, corresponds to {FOMC(Q,n) | Q in FO }




Discussion

Fagin 1974
THEOREM 6. Assume that A C Fin(S), and that A is closed under iso-

morphism,
1. If S+, then A isan S-spectrum iff E(A) € NF.
2. If S=4, then A isa spectrum iff E(A) € NF,.

Here: S is a vocabulary, S-spectrum of Q = set of structures that satisfy Q

Restated:
1. NP =3S0O Fagin’s classic result

2. NP, = 3SO(empty-vocabulary) less well known

#P, corresponds to {FOMC(Q,n) | Q in FO }




Summary

Exploiting symmetries gives us more power:

* Some gueries that are hard over
asymmetric databases become easy over
symmetric ones: e.g. FO? is in PTIME

Limitations:
* Proving hardness is very hard
* Real data i1s never completely symmetric



